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This paper presents a robust control system design for suppressing the radiated acoustic
power emitted from a vibrating planar structure, and spillover e!ect caused by neglected
high-frequency modes. A state-space model of a simply supported panel structure is derived
and an output equation is formed based on the one-dimensional PVDF "lm sensors. An
output feedback H

=
control is designed by introducing a multiplicative perturbation which

represents unmodelled high-frequency dynamics in the control system. The simulation and
experimental results demonstrated signi"cant decrease in sound radiation for the considered
structural power modes in control.

( 2002 Academic Press
1. INTRODUCTION

Active control of sound radiation emitted from vibrating structures has been intensively
investigated using distributed parameter sensors and piezoceramic actuators in recent
years. One of the approaches used for the suppression of structure-borne noise is based on
the vibration control, in which the vibration of an objective structure is controlled to
suppress the noise radiated from it. With respect to this approach, the earlier works [1, 2]
demonstrated the use of piezoactuators and piezoelectric Polyvinylidenedi#uoride (PVDF)
"lm sensors in active control of sound radiation. Adaptive control of a panel structure with
attached PVDF sensors is studied using both feedforward and feedback control in
references [3}5]. In a most recent research [6], the use of adaptive sensoriactuators is
presented for structural acoustic control. Distributed parameter PVDF "lm sensors and
piezoelectric actuators are used to create adaptive or smart structures [7]. Besides sensors
and actuators, controllers also play a central role in active structural control. Robustness of
a structural control system may sometimes be an issue due to the disturbance e!ect of high
order structural modes even if the most advanced sensors and actuators are employed with
the structure.
0022-460X/02/050885#13 $35.00/0 ( 2002 Academic Press
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In this study, a systematic control design based on a state-space model of a panel
structure is presented. Although a velocity feedback is mostly preferred due to its simplicity
to add damping into a control system, there are some advantages to design a dynamic
controller. First, a dynamic controller itself is a system in a state-space form and involves
some systematic design steps with knowledge of the plant parameters. Therefore, in each
step such as modelling, controller design, closed-loop simulations and experiments one can
have the ability to design a desired robust controller which satis"es stability and
performance requirements. Second, a direct displacement feedback to the controller is
possible without any derivation of the sensor signal. Therefore, noise-related problems
caused by the derivation of the sensor signal is avoided.

This paper begins with the derivation of an output equation based on distributed sensor
outputs. For the completeness of the study, a state-space equation describing the motion of
a distributed parameter structure is derived and transformed to suppress acoustic power.
H

=
controller design is explained extensively with the control objectives and the selection of

frequency weighting "lters. In addition, modelling issue for distributed parameter structures
is discussed for a robust control design to avoid the e!ects of high order frequency modes.
Finally, experiments on active modal control are conducted using H

=
robust controllers,

showing a signi"cant reduction of the targeted modal amplitude without causing instability
of the control system.
Figure 1. Picture of the experimental panel structure.

2. PANEL STRUCTURE
2.1. DERIVATION OF THE MODAL OUTPUT EQUATION

PVDF sensors can be shaped so as to act as spatial "lters which only observe certain
modes. References [8, 9] described the design procedure of PVDF sensors for a certain
frequency range by separating the modes of a panel structure into modal groups. Basically,
the total charge produced by the PVDF sensors is computed using modal displacements of
the distributed parameter structure for each group of the modes. In reference [10], the
PVDF sensor outputs were combined as an output equation of the state space in order to
design an output feedback H

=
control for the panel structure. Following reference [8], the
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sensor output amplitude is expressed as
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where j denotes the mode number, e
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, e
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are the piezoelectric stress/charge coe$cients,
and C

0
is the shaping constant of the "lm sensor. In practice, the value of the shaping

constant depends on the gain of charge ampli"er, the thickness, area and material of the
PVDF "lm. ¸
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"lm sensor in the x-axis. For four di!erent structural modes such as odd/odd, odd/even,
even/odd, and even/even, four sets of distributed parameter sensors should be designed. The
outputs of each set are arranged as
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Here n
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, and n
ee

denote the necessary number of sensors in order to separate each
group of modes up to a prescribed frequency. The output equation can be obtained using
the modal displacements with corresponding weighting factors computed using sensor
shape functions. The "nal form of the output equation for the state-space equation is
obtained as

y"C
y
oo

(1) 0 y
oo

(2) 02 y
oo

(N
m
) 0

y
oe

(1) 0 y
oe

(2) 02 y
oe

(N
m
) 0

y
eo

(1) 0 y
eo

(2) 02 y
eo

(N
m
) 0

y
ee

(1) 0 y
ee

(2) 02 y
ee

(N
m
) 0 D C

x6
1

xNQ
1
F

xN
N
mxNQ

N
m

D , (4)

where xN
1
2xN

N
m

and xNQ
1
2x60

N
m

are the modal amplitudes and the modal velocities
respectively.

2.2. DERIVATION OF THE STATE-SPACE EQUATION

Consider the following equation for a one-dimensional distributed parameter #exible
system:

MwK (x, t)#2m¸1@2wR (x, t)#¸w(x, t)";(x, t), (5)

where w (x, t) is the displacement at location x on the structure at time t in response to the
applied force ;. Here, M and m represent the mass per unit area and the damping constant
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respectively. ¸ is assumed to be a time-invariant positive di!erential operator. The
eigenvalue problem is expressed as
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n
is the nth eigenvalue, and t
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The displacement on the structure can be expressed as
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where x
i
(t) is the amplitude of ith mode and t

i
(x) is the value of the associated mode shape

function. On substituting equation (8) into equation (5) with some computation, the
equation of motion for the nth modes is obtained as
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From equation (9), the state-space equation for the nth mode has the form
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where t3
n,i

, and t1
n,i

are the value of the mode shape function at the control force and
disturbance force application point respectively. N

u
and N

v
represent the number of control
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m
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modes can be written as
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2.3. ACOUSTIC POWER CONTROL

Equation (12) is not suitable for attenuating the acoustic power radiated from a vibrating
structure. A transformation is necessary to minimize the acoustic power rather than to
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minimize vibration in a distributed parameter structure. With this aim, the acoustic power
transform matrix is computed as
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A factored form of R is given as

R"QKQ~1, (15)

where Q is the orthogonal transform matrix, whose columns are the eigenvectors of R and
K is the diagonal matrix of eignevalues. In order to minimize acoustic power, equation (12)
is transformed to

xNQ (t)"AM xN (t)#BM u (t)#DM v (t), (16)
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Here, Q
e

represents the (2N
m
]2N

m
) expanded form of the orthogonal transform matrix

given in equation (15).

3. H
=

CONTROL DESIGN

3.1. PLANT AND UNCERTAINTY DEFINITION

H
=

control theory is a well-established theory for feedback control [11] and some design
tools [12] are available commercially in order to design an H

=
controller. The theory will

not be repeated here but the preparation for control design will be given extensively.
Theoretically, there are in"nite number of modes in a distributed parameter system. On

the other hand, a state-space equation which includes the plant dynamics up to the
considered highest mode is necessary in order to design a controller. Although low-
frequency modes dominate large amounts of modal contributions in a distributed
parameter system, the frequency range selected for state space should be large enough to
describe distributed parameter system dynamics so that the e!ect of higher modes which are
not included in state space should be negligible.

Consider the panel structure as a control system depicted in Figure 2. The structural
modes of this panel are presented in Table 1. It is assumed that 500Hz is far enough for the
state space to neglect e!ects of high order modes. Since modal "ltering of the acoustic power
Figure 2. A simply supported panel structure.



TABLE 1

<ibration modes of the panel structure up to 500 Hz

Mode no. Mode Frequency Mode no. Mode Frequency

1 (1,1) 35)292 12 (3,2) 283)588
2 (1,2) 55)716 13 (2,5) 284)136
3 (1,3) 89)756 14 (3,3) 317)628
4 (2,1) 120)744 15 (2,6) 359)024
5 (1,4) 137)412 16 (1,7) 362)077
6 (2,2) 141)168 17 (3,4) 365)284
7 (2,3) 175)208 18 (3,5) 426)556
8 (1,5) 198)684 19 (2,7) 447)529
9 (2,4) 222)864 20 (4,1) 462)551

10 (3,1) 263)164 21 (1,8) 464)198
11 (1,6) 273)573 22 (4,2) 482)975
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modes is possible using PVDF sensors, each mode group such as odd/odd, odd/even,
even/odd and even/even modes of the panel structure become independent of each other.
Therefore, the state-space equations for each mode group may be formed in order to design
four modal controllers. The state-space equation is obtained as
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3R8]1. Note that the mode group numbers (i"1,2 , 4) correspond to the odd/odd,

odd/even, even/odd and even/even modes respectively. Here, f indicates a full order
modelling consideration of the plate up to 500 Hz frequency range. It is possible to design
H

=
controllers with high order using the full order state-space model but current DSP

speeds are limited to implement high order controllers. A model reduction is inevitable for
control design. For this reason, controllers will be designed for the frequency range of
150 Hz with six vibration modes. In this frequency range, there are two odd/odd, two
odd/even, one even/odd and one even/even mode. The reduced order state-space equations
of the plate for each mode group are formed as
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thought that the total uncertainty stems not only from the truncated modes in model
reduction but also from unmodelled high-frequency modes larger than 500 Hz. As stated
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before, the level of the unmodelled modes would always be lower than modelled ones.
Therefore, it will be a correct approach to consider only the truncated modes for
uncertainty modelling.

3.2. CONTROL OBJECTIVES

The control system considered here is a regulator-type system with no reference input to
be followed during control operation. The regulator problem considered in H

=
control

theory is how to construct a controller that stabilizes the closed-loop system and minimizes
the H

=
norm of the closed-loop system transfer function [13]. The "rst objective of the H

=
control design will be robust stabilization of the feedback control system against the
unknown multiplicative perturbation. Consider the block diagram of the control system
shown in Figure 3 (a) and 3(b). There are two fundamental transfer functions in this control
system structure. These are
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P
r
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I!P
r
(s)K(s)

, ¹ (s)"
P
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I!P
r
(s)K (s)

, (21)

where M(s) is called the settling function and ¹(s) is called the complementary sensitivity
function. In general, ¹(s) is the main transfer function for evaluating the robust stability of
a closed-loop system. Assuming that ¹(s) and D(i)

m
(s) are both stable, the su$cient condition

for the feedback system to be robustly stable against all perturbations is

E=
T
(s)¹(s) E

=
(1 (22)

provided that the upper limit of D(i)
m

(s) satis"es

p6 [D(i)
m

(s)](=
T
(s), (23)

where p6 indicates maximum singular value and=
T
(s) represents a weighting function for

the transfer function ¹ (s). From equation (22), it is obvious that the smaller ¹(s) is, the
better the robust stability.

The second objective of the H
=

control design is to improve the performance of the
feedback control system. The problem in improving the response performance is how to
attenuate the in#uence of the disturbance v on the output y of the plant. This issue is related
to minimization of EM(s)E

=
"sup p6 [M(s)] subject to the condition of stability of the

closed-loop system. In practice, the in#uence of disturbance is relatively large in the
Figure 3. Block diagrams for H
=

control design: (a) perturbed system, (b) augmented structure (z
1

and z
2

are
controlled outputs).
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low-frequency domain and relatively small in high frequency. Assuming that a weighting
function=

M
(s) for the transfer function M(s) is chosen to be large in the low-frequency domain,

the H
=

norm of the E=
M

(s)M (s)E
=

will be small enough for disturbance attenuation.
Supposing that the weighting functions=

T
(s) and=

M
(s) are speci"ed so that the control

system satis"es both robust stabilization and response performance, the H
=

control design
for the mixed sensitivity problem is de"ned as

KK
=

T
(s)¹(s)

=
M

(s)M(s) KK
=

(1. (24)

3.3. SELECTION OF THE FREQUENCY SHAPING FILTERS

An important stage in H
=

design is to select the frequency weighting functions. In this
design study, the robust stabilization is mainly focused and improvement in response
performance is satis"ed by selecting a constant value for related weighting function such as
=

M
"k

m
. A general rule to select the cross-over frequencies of =

T
is to use the

multiplicative uncertainty existing in the plant. In general, the uncertainties should be
covered by the weighting function =

T
to maintain robust stability. This rule needs to be

revised by specifying some parameters that increase e!ectiveness of the design because there
are in"nite number of weighting "lters which satisfy the condition of uncertainty covering.
Here, an approach for selection of the frequency shaping "lter =

T
will be described for

odd/odd mode group. The same approach is also valid for other mode groups. Since each
state space has four input channels, the robust stability related weighting function has the
structure of =

T
"diag(w

T
, w

T
, w

T
, w

T
). A second order "lter is de"ned as follows:

w
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u
wd
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, (25)

where subscripts wn and wd indicate the parameters of the "lter for the numerator and the
denominator respectively. The selection of the "lter may be reduced to a single parameter
such as k

t
, provided that the frequency and damping values are speci"ed. For odd/odd

mode case, it is desired that controller gain should be high until the second odd/odd mode
for suppressing the targeted two modes only. At the third and other odd/odd modes, the
controller should be low gain for the sake of robustness. In the light of these design
requirements, the corner frequencies of the "lter become the second controlled mode and
the third uncontrolled mode such as u

wn
"89 Hz, u

wd
"199 Hz. Damping rates are

speci"ed as m
wn
"0)5, and m

wd
"0)2. For di!erent values of k

t
(0)1)k

t
)10), weighting

"lters are obtained and controllers are designed using these "lters as shown in Figures 4(a)
and 4(b) respectively. For small values of k

t
such as 0)1, controller gain increases and excites

higher order uncontrolled modes as shown in Figures 4(c) and 4(d) from the closed-loop
system responses.

The design of the controllers were performed using the control architecture presented in
Figure 3(b). Based on this structure, the augmented system for the control design may be
obtained as
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Figure 4. Frequency weighting "lters and closed-loop responses: (a) weighting "lters; (b) H
=

controllers;
(c) impulse responses; (d) closed-loop responses.
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where G(s) denotes the augmented plant matrix. For =
M
"k

m
and =

T
"

C
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(sI!A
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#D
wT

, the augmented plant matrix G(s) is obtained as
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D
21

D
22
D . (27)

Forming the above augmented plant matrix for each mode group, the controllers were
designed using the Matlab LMI Control Toolbox [12].
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4. EXPERIMENTS

A previously constructed test system which is situated in a semi-anechoic room is used for
control study and experiments. A #at steel plate measuring 1800]880]9 mm3 was
supported on knife edges "xed to the perimeter of an enclosure with ferroconcrete walls of
10 cm thickness as illustrated in Figure 1. Inside the enclosure covered with absorbent
material, an electro-dynamic shaker was installed to excite the plate. Distributed
parameters sensors (totally 14 PVDF "lms) shaped for separating structural modes of the
panel are attached to the structure. Four-point actuators "xed on U pro"le steel beams are
placed over the panel structure at the corners. A feedback control system is established with
a digital signal processor (DSP) to realize the experiments.

The steel panel is disturbed by white noise up to a frequency range of 500 Hz. Outputs
from the shaped PVDF sensors attached to the plate are fed directly into the controllers as
Figure 5. Frequency response of the closed-loop: (a) odd/odd modes: - ) - ) - ), without control; **, with
control; (b) odd/even modes: - ) - ) - ) , without control; **, with control; (c) even/odd modes: } ) } ) } , without
control; **, with control; (d) even/even modes: } ) } )} , without control; **, with control.
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error signals. The computed H
=

controllers for odd/odd, odd/even, even/odd and even/even
modes are discretized and downloaded into four DSP running in parallel. Note that all
controllers run simultaneously and the outputs of the controllers are summed at each
channel before feeding through power ampli"ers to the actuators. The actuators suppress
panel vibration to minimize the noise radiated by the vibrating panel.

Figure 5(a}d) shows the experimental results achieved by the H
=

feedback controllers for
each mode groups. Compared with or without control case shown in Figure 5(a), the
targeted (1, 1) and (1, 3) odd/odd modes with control are suppressed 21)76 and 9)16 dB
respectively. The controlled (1, 2) and (1, 4) odd/even modes decreased 28)74 and 14)85 dB,
respectively, as shown in Figure 5(b). Similarly, the targeted (2, 1) even/odd mode and (2, 2)
even/even mode suppressed 24)49 and 32)09 dB (Figures 5(c}d)). In all these results, the
uncontrolled modes larger than 150 Hz are not excited by H

=
feedback controllers. The

time history responses of the control system are presented in Figure 6(a}d). The time history
responses with control show signi"cant decrease in the displacement amplitude of the plate.
The suppression of the acoustic power mode results in the spectrum shown in Figure 7,
which is obtained by the acoustic power measurement using a microphone traversing
system set 10 cm from the panel. The results obtained with acoustic power measurements in
Figure 7 agreed with the results obtained in Figure 5(a}d) except some increase in power
modes close to 163 and 259 Hz. A possible explanation of these increases is that they are
caused by external e!ects such as power modes of the beams, which are used for supporting
Figure 6. Time history responses: (a) Odd/odd modes: } ) } )} , without control;**, with control. (b) Odd/even
modes: - - - -, without control;**, with control. (c) Even/odd modes: - - - - -, without control;**, with control.
(d) Even/even modes: } ) } ) } , without control; **, with control.



Figure 7. Acoustic power spectra: j, with control; K, without control.
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the actuators, because there is no increase in attached PVDF sensor outputs in this
frequency range.

5. CONCLUSIONS

Output feedback control of acoustic power radiated from a planar structure using H
=

control theory has been described. The state-space equations of a panel structure for
odd/odd, odd/even, even/odd and even/even modal groups are derived and transformed in
order to suppress radiated acoustic power. The output equations of the state spaces are
formed using distributed parameter modal sensors. An H

=
control design is explained

based on the reduced order model by introducing the truncated high-frequency modes as
multiplicative uncertainties. Experiments on active modal control are conducted using H

=
robust controllers, showing a signi"cant reduction of the targeted modal amplitudes
without exciting the uncontrolled modes of the structure.
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